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Abstract
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by the projection of a set of features of a specially designed visual target. The target is a sphere marked with
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1 Introduction

There is a large and growing body of algorithms for “visual servoing” (VS) — motion control using visual feedback.
Traditionally, VS algorithms generate motor reference velocities to register a camera’s current view of a scene with
a previously stored view (for a tutorial, see [7]).
We seek to move VS toward a systematic theory by characterizing the geometry of “visible” configurations of

a visual target relative to a camera. In particular, for a specific target geometry we present a diffeomorphism — a
smooth and smoothly invertible transformation — from an appropriately defined visible set of configurations to an
image space. We believe this transformation will enable the construction of purely image-based, global dynamic
VS algorithms.

1.1 Background

A significant challenge involves representing rigid motions in terms of visually measured quantities. Ideally, such
a representation should enable effective encoding of

• Configuration and State, e.g. position and velocity or position and momentum for Lagrangian or Hamil-
tonian systems.

• Tasks and goals, e.g. trajectories in the state space or points in the configuration space.

• Obstacles, e.g. the edge of the field-of-view (FOV) for VS systems.

• Uncertainty, e.g. sensor and actuator noise or parametric error.

There are several candidate representations of image-based rigid motion to consider from the literature. The
classical approach to “2D VS” employs the projection, treated as a vector in Rn, of an arbitrary set of feature
points [7]. The redundancy of using extra feature points seems to confer robustness to measurement noise in any
one of the feature measurements. However, the movement of features is constrained by the underlying rigid motion,
rendering image-based control and motion planning in image space challenging for large deviations from a goal.
Notwithstanding those challenges, Corke and Hutchinson [2] created a 2D kinematic algorithm for 6DOF VS that
seems (empirically) to have a very large basin of attraction while keeping features in the FOV. Their algorithm
employs a clever choice of image features which helped motivate the choice of features used in this paper.
A more recent approach uses partial pose reconstruction: given a sufficient number of feature points, the relative

pose, up to a scale in translation, between two views may be determined without exploiting a geometrical model of
the points. Using this technique, researchers developed six DOF VS algorithms robust to calibration uncertainty
[12, 15]. It is worth noting that the methods used require sufficient point correspondences between views to fully
reconstruct a geometric model of the visual target [10]. Application of this method to contexts besides full six
DOF VS remains a challenge.
Alternatively, one may recover the complete pose of a camera with respect to a target by exploiting a model of

the target [11]. Vision-based controllers using full pose reconstruction are often referred to as “3D VS” algorithms.
Model based pose reconstruction requires fewer feature points than the model-free approach described above, and
has the added advantage of fully recovering feature depth, effectively reducing the camera to a “virtual Cartesian
sensor.” Representing visibility obstacles, such as the FOV or self-occlusions is less parsimonious, but can be done
[5]. Formal results demonstrating parametric robustness of VS systems using this method remain elusive.
Generalized image-based coordinates have proven extremely effective in a few narrow contexts [3, 5, 16]. Gen-

eralized coordinates describe kinematic motion with one variable per mechanical DOF. Lagrange’s equations, for
example, are usually written using such coordinates. Hence, this approach enables the expression of dynamical
equations of motion in terms of measured quantities on the image plane. Obstacles such the FOV and self-occlusions
often appear as the boundary of a compact manifold in image-space and hence their avoidance may be cast as an
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instance of dynamical obstacle avoidance [5]. Although quite robust in practice, formal guarantees of robustness
to noise or parametric uncertainty for this framework remains an open problem.

1.2 Contribution

To date, global image-based representations of configuration have been applied only to three DOF systems. This
paper builds on previous results in a key way: we present an image-based, geometric representation of six DOF
rigid motion. Our development of a global representation of “visible” rigid motions viewed through the projection
of a set of features should help pave the way for new global, dynamic VS systems.

Organization. In Section 2, we employ a specific target geometry — a sphere with a few markings — to create
a global image-based representation of motion for six DOF VS. Included in our development is a simple, purely
image-based representation of the so-called image Jacobian (made possible since, as we show, the image and task
spaces are diffeomorphic). In Section 4, we suggest a method for using our diffeomorphism for kinematic or dynamic
control, although there is much open work to be done in this endeavor. Finally, we give some concluding remarks
in Section 5.

2 Six DOF Diffeomorphism to Image-space

We assume a visual target may be designed to our specifications, so we may explore new image-based representations
of rigid motion. In cases in which we have the freedom to design visual targets — for example when designing
docking stations for space craft, helicopter landing beacons, or visual targets for a factory setting — this approach
may lead to novel target designs that ease the control problem. More generally, it is hoped that the insight drawn
from taking this approach may enable us to reinterpret target geometries over which we have have less design
freedom.
Consider the problem of moving a rigid target object in six DOF relative to a perspective camera. The rigid

target considered is as follows:

1. A spherical body. Consider a spherical body of radius %. As the body moves away from the camera, its
projection gets smaller. Roughly speaking, the position and size of the body’s image encodes the position of
the center of the body relative to the camera.

2. A single point on the body. Adding a visible point to the body breaks the visual symmetry, allowing us
to resolving two rotational DOF’s from the location of the feature point on the image.

3. A unit vector tangent to the body. The final degree of freedom is resolved by considering the orientation
on the image of a projected vector attached to our feature point on the body.

Zhang and Ostrowski [16, 17] developed the idea of projecting a spherical body to an image plane for VS of a
blimp relative to a large ball. Using a “flat” image plane, the resulting image is an ellipse, which they approximate
as a circle by assuming that a slice of the spherical body parallel to the image plane is projected. The present
paper builds on that work, employing a more ‘exact’ diffeomorphism to the image-space, as well as incorporating
additional markings on the body whose projection encodes rotational information.

2.1 Notation and Definitions

At the risk of burdening the reader with formalism, we present the following definitions to enable a precise geometric
description of the domain and range of a camera viewing rigid motions.

An affine point p ∈ A3 has homogeneous coordinates p =
[
p1 p2 p3 1

]T
with respect to some rigid frame.

Note that TA3 = A3 × R3, and that R3 acts on points to translate them in the usual way, so that if v =
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Table 1: List of symbols.
Symbol Description

o, p, b, . . . ∈ E3 Euclidean points (Roman)
v, e, . . . ∈ R3 vectors (boldfaced)
e1, e2, . . . ∈ R3 standard basis

π : {E3 − oc} → S2 image projection model – spherical panoramic camera
F = {o, i, j,k} rigid coordinate frame, o ∈ E3 and i, j,k ∈ R3

Fc,Fb camera frame and body frame
pb,vb point, p, and vector, v, with respect to Fb

H ∈ SE(3) rigid transformation of Fb, relative to Fb
R ∈ SO(3) rotation effected by H, columns R =

[
r1 r2 r3

]

d ∈ R3 translation effected by H
pc = Hpb,vc = Rvb point, p, and vector, v, with respect to Fc

ν : SE(3)→ R measure of feature visibility, (5)
V ⊂ SE(3) set of “visible” configurations, H ∈ V ⇐⇒ ν(H) > 0
λ ∈ (0, 1) radius on image sphere of body, (3)
s ∈ S2 unit vector pointing toward body centroid, (3)

Q ∈ SO(3) image-based rotation, columns Q =
[
q1 q2 q3

]
, (7)

(Q,λ, s) = c(H) camera map, (8)
I image feature space, I ⊂ SO(3)× (0, 1)× S2, (9)

[
v1 v2 v3

]T ∈ R3 and p ∈ A3, then p + v =
[
p1 + v1 p2 + v2 p3 + v3 1

]T ∈ A3. Two points cannot be
“added” together, but if p, b ∈ A3 then v = p− b ∈ R3 is the vector such that p = b+ v. Adding the usual metric
structure to affine space A3 yields Euclidean space E3 where the distance between two points is given by the two
norm of their difference, ‖p− b‖ (a measure independent of the choice of rigid frame).
A rigid frame, F , is defined by its origin, o ∈ E3, and three mutually orthogonal unit vectors, i, j,k ∈ R3, that

create a right-handed frame. Consider a full perspective (“pinhole”) camera with frame Fc such that oc is located at
the pinhole (or optical center), with kc aligned with the optical axis. The pinhole camera projects points in the open
half space “in front” of the camera to an image-plane pair, given by via the map, π+{E3 : (p− oc) · kc > 0} → R2,
expressed in camera frame coordinates

π+(p) =
f

p3

[
p1

p2

]
p3 > 0 , (1)

where f is the camera focal length. The camera observes features of a rigid body, affixed with rigid frame Fb. Let

H =

[
R d

0T 1

]
∈ SE(3), where R =

[
r1 r1 r3

]
∈ SO(3), d ∈ R3,

denote the rigid transformation of Fb relative to Fc. A point expressed with respect to the body-frame as pb,
appears as pc = Hpb with respect to the camera frame. Similarly, if vb is a vector in the body frame, then
vc = Rvb is the same vector with respect to the camera frame.
Hamel et. al. [6] remap the image plane to a sphere to recover some symmetry that is “broken” by a flat image

plane. This approach has also been used in the structure from motion (SFM) literature [1]. Let p = (p− oc) and
note that the unit vector, p/‖p‖ may be recovered from the image-plane pair in (1) since

p

‖p‖ =
[
π+(p)
f

]/∥∥∥∥
[
π+(p)
f

]∥∥∥∥ , p3 > 0
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with respect to the camera frame. Of course, this assumes that we know the parameter f (or, more generally, all
so-called “intrinsic” camera parameters, omitted to simplify the presentation). Motivated by this observation, we
consider for convenience a “panoramic” spherical camera

π : (E3 − {oc})→ S2

: p 7→ p

‖p‖ where p = (p− oc) .
(2)

For the purposes of this paper, S2 = {v ∈ R3 :v · v = 1} ⊂ R3. For the camera map, S2 corresponds to the
unit tangent space of E3 at oc, namely “the set of unit vectors originating from the camera origin.” To keep
features within a finite FOV, one may introduce an appropriate image-space “obstacle” into the controller design
(see Section 4).

2.2 Image-based Translation

Attach the body frame at the center of the sphere, so that the location of the body relative to the camera origin
is given by ob − oc = d. If ‖d‖ > % — i.e. the body remains bounded away from the camera origin — then the
surface of the body double covers a topological disc on S2 via the map π. The edge of the disc, a planar slice of
the image-sphere, is a perfect circle of radius

λ =
%

‖d‖ , % < ‖d‖ <∞.

(The circle radius, λ, appears dimensionless because the image-sphere was normalized to unit radius). The center
of the circle on the image-sphere is in the direction of

s =
d

‖d‖

and is readily measurable from the projection of the body.
Let B := {d ∈ R3 : ‖d‖ > %} denote the translations of the body origin that keep it a body radius away from

the camera. We now have a diffeomorphism — a smooth and smoothly invertible function — from locations of the
body to image measurements, c1 :B → (0, 1)× S2, given by

c1 :d 7→ (λ, s) . (3)

The inverse of c1 is given simply by

c−1
1 (λ, s) =

%

λ
s . (4)

2.3 Image-based Rotation

To break the rotational symmetry of our spherical rigid body, attach a visible feature point, b, to its surface, and
a unit vector a tangent to the body at that point. For convenience, align the body frame so that origin coincides
with the center of the body, and the unit vector (b − ob)/% lies along the negative kb axis. Hence, in the body

frame bb =
[
0, 0, −%, 1

]T
.

As we will show, the projection of b to the image-sphere, q1 = π(b), encodes two rotational degrees of freedom.
We encode the final degree-of-freedom by projecting a unit vector or “arrow”, a, tangent to the body at the point
b. In practice, the vector a may be approximated by two distinguishable points on the surface of the sphere. Again
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q1q2
s

-ρr3

r2

r3

r1

r2

γ

Fb

Fc

||d||

Image sphere

Spherical body

Figure 1: Projection of a spherical body with a feature point on it to the image-sphere. The image-plane measure-
ment is given by y = (Q,λ, s) = c(H).

for convenience we assume the vectors body-fixed representation is simply ab = e2. Let b = b − oc denote the
vector from the camera origin to the body point b. Recalling that the rotation matrix R has columns (r1, r2, r3),
then with respect to the camera frame, we have

bc =

[
bc

1

]
= Hbb, where bc = d− %r3, and ac = Rab = r2 .

Note that (b− ob) · a = −% e3 · e2 = 0.

Some configurations cause the body to occlude the feature point, b. This occurs when (b−oc) · (ob− b) becomes
negative. Hence, we define a “visibility” function [5], ν, and associated “visible set” of rigid transformations, V by

ν(H) := (d− %r3) · r3 and V := {H ∈ SE(3) : ν(H) > 0} . (5)

Note that ν(H) > 0 =⇒ ‖d‖ > %, i.e. d ∈ B = {d ∈ R3 : ‖d‖ > %}.
The projection of (b,a) ∈ TE3 to the image sphere is modeled by

Tπ : (b,a) 7→ (π(b), Tbπ · a) ∈ TS2 .

We are not concerned with the length of the projection of a, only the direction. Hence, consider the unit tangent



Toward Geometric Visual Servoing 7

map T 1π represented in the camera frame by

T 1π : (b,a) 7→ (q1, q2) where (6)

q1 =
bc

‖bc‖ =
d− %r3

‖d− %r3‖
and q2 =

Γq1
ac

‖Γq1
ac‖ =

Γq1
r2

‖Γq1
r2‖

where Γq1
:= (I − q1q1

T ) .

Geometrically, q2 is a unit vector tangent to the image-sphere at the point q1. The unit vectors q1 and q2 are
mutually orthogonal. Consider the plane containing the camera origin oc, the point b, and the vector a. The unit
vector

q3 = q1 × q2

is normal to that plane. Thus, we define a function c2 :V → SO(3)

c2 :H 7→
[
q1 q2 q3

]
= Q, (7)

identifying T 1S2 with SO(3).

2.4 Diffeomorphism to Image-space

Claim 1. The function c :V → I, defined by

c(H) := (c2(H), c1(d)) , where (8)

I =
{
(Q,λ, s) ∈ SO(3)× (0, 1)× S2 : q1 · s >

√
1− λ2

}
(9)

and Q =
[
q1 q2 q3

]

is a diffeomorphism, i.e. V ' I.
The proof is given in Appendix A

3 Image Jacobian

To be of practical application to VS we present a representation of the tangent map Tc :TV → TI, its inverse
Tc−1, and the cotangent map T ∗c :T ∗I → T ∗V, with the following commutative diagram in mind:

TV

²²

Tc //

²²

TI
Tc−1

oo

²²
V c // I

T ∗V

OO

T∗c−1

//
T ∗I

T∗c

oo

OO

We identify the tangent space TSE(3) of the Lie group SE(3) with1

TSE(3) ' SE(3)× se(3) ' SE(3)× (R3 s R3), (10)

1The Lie algebra R3 s R3 is R3 × R3 with the Lie bracket structure found in [13].
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where se(3) is the Lie algebra of SE(3). The identification occurs via “right translation,” i.e.

(H, Ḣ) 7→ (H, ḢH−1) 7→ (H, (ω,v)) (11)

where

H =

[
R d

0T 1

]
, Ḣ =

[
Ṙ ḋ

0T 0

]
and





ω =
(
ṘR−1

)∨

v = −ṘR−1d+ ḋ

and the isomorphism R3 ' so(3) is defined by

̂:



ω1

ω2

ω3


 7→



0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 , ∨ :



0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 7→



ω1

ω2

ω3


 ,

where so(3) is the Lie algebra of SO(3). More detail can be found in, for example [13].
Similarly, for each y = (Q,λ, s) = I ⊂ SO(3)× (0, 1)× S2, we have the following identification

TyI = TQSO(3)× Tλ(0, 1)× TsS
2 ' R3 × R× TsS

2 (12)

where we identify TQSO(3) with so(3) ' R3, again via right translation

(Q, Q̇) 7→ (Q, ξ) where ξ =
(
Q̇Q−1

)∨
. (13)

Hence, to compute THc we find the mapping relating the tangent space identifications made above in (10) and
(12), namely

(H, (ω,v)) 7→
(
y, (ξ, λ̇, ṡ)

)

where y = (Q,λ, s) = c(H) ,



ξ

λ̇
ṡ


 = C(y)

[
ω

v

]

and

C(y) := THc|H=c−1(y)

=



I3×3

1
β
(δq1q

T
3 − q2q

T
3 + q3q

T
2 )

01×3 −λ2

%
sT

−ŝ λ
%
(I3×3 − ssT )


 , (14)

where

δ =
s · q2√

λ2 − sin2 φ
, β =

%

λ

(
cosφ−

√
λ2 − sin2 φ

)
,

cosφ = s · q1 and sinφ =
√
1− (s · q1)2 .

The construction of C is straight forward. The details are given in Appendix B.
To compute Tc−1, and T ∗c is now straight forward. Using the above representations, we have

Tyc
−1 =

(
C(y)TC(y)

)−1
C(y)T and T ∗

y c = C(y)T . (15)

Note that the expression for Tyc
−1 is not a pseudo-inverse. The possible confusion arises since the six dimensional

tangent space TyI is locally embedded in R7. It should be noted that in many image-based visual servoing strategies
employ the pseudo-inverse of the image Jacobian since the image feature points are treated as though moving freely
in Rn.
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4 Controller

For the present work, we consider the case of so-called “eye-in-hand” VS, wherein the camera moves relative to the
body which serves as an inertial reference frame. Let (Ω,V ) denote the angular and spatial velocities, respectively,
of the camera relative to the fixed, inertial body frame. Let G = H−1 denote the transformation of the camera
frame, Fc, relative to the inertial body frame, Fb. Note that

[
Ω̂ V

0T 0

]
= G−1Ġ = −ḢH−1 = −

[
ω̂ v

0T 0

]
, (16)

effectively mapping the identification of TSE(3) given by the right translation of Ḣ in (10) and (11) to the left
translation of Ġ = d

dt

(
H−1

)
. Note that this relationship clears up, once and for all, the kinematic distinction

between “eye-in-hand” servoing and the so-called “fixed-camera” configuration, wherein the camera is fixed and
the body is moving.
For simplicity, we posit a fully actuated purely kinematic plant model

Ġ = G

[
Ω̂ V

0T 0

]
(17)

where we treat (Ω,V ) ∈ R3 s R3 as control inputs. We generalize this to a dynamical free rigid body in Appendix
C. One possible control strategy involves planning a path yd(t) ∈ I that moves from the initial configuration to
the goal state and following the path via

[
Ω

V

]
= −Tyc−1



ξd
λ̇d
ṡd


 (18)

where
[
ξd , λ̇d , ṡd

]T
is the desired velocity ẏd, expressed using the tangent space identification in (12). The

minus sign in the above expression arises due to the identification made above in (16).

4.1 Visual Servoing via Navigation Functions

The diffeomorphism c, the visible set V, and its relatively simple image I, provide tremendous leverage into the
VS problem. Given a desired configuration G∗ = (H∗)−1, measured through its image y∗ = (Q∗, λ∗, s∗) = c(H∗),
there are many possible image-based control strategies we can employ to achieve our objective of driving G→ G∗.
An open-loop strategy, such as the one above in (18), may be undesirable. However, the generation of ẏd can

also be conceived as a feedback law, for example by using the method of Navigation Functions (NF’s) [8, 9, 14]. A
substantial benefit of using NF’s is that they allow us to “lift” our kinematic controller to second order settings with
little additional effort, while maintaining similar convergence guarantees (as we do for this problem in Appendix
C). Moreover, these methods have already proven practicable for dynamic VS [5].
Let D ⊂ I be compact “safe” domain. If we carefully design an artificial potential function ϕ :D → [0, 1], then

by letting

ẏd = −∇ϕ (19)

the control law given by (18) drives G so that y converges to y∗, except for a set of measure zero. The following
definition, adapted from [8], gives a set of conditions that guarantee essentially global convergence of the above
controller (18), with ẏd given in (19).

Definition 1. Let D be a smooth compact connected manifold with boundary, and y∗ ∈
◦

D be a point in its interior.
A Morse function, ϕ ∈ C2[D, [0, 1]] is called an Navigation Function if
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1. ϕ takes its unique minimum at ϕ(y∗) = 0;

2. ϕ achieves its maximum of unity uniformly on the boundary, i.e. ∂D = ϕ−1(1).

For any function satisfying the above definition, the controller given by (18) will ensure convergence y
t→∞−−−→ y∗

from all initial conditions in D. For more information, see [8].

4.2 Computing a Safe Domain and Navigation Function

The next step is to compute a compact domain D ⊂ I that is “safe” with respect to the FOV of our camera system
in the sense that if G−1 = H ∈ c−1(D) then all the necessary features are visible. To illustrate, we treat the FOV
as a cone originating at the camera origin, with center along e3, as shown in Figure 2. This cone reduces to a
constraint on s and λ, namely

f(y) := λs · e3 −
√
(1− λ2)(1− (s · e3)2) ≥ cos θ

where θ is the angle from e3 to the edge of the FOV cone. Additionally, we constrain λ ∈ [λmin, λmax] ⊂ (0, 1)
where the parameters λmin and λmax effectively keep the camera from moving too far from or too close to the
camera body, respectively. Finally, we keep q1 from being too close to the edge of the projected circle, namely
q1 · s+ ε ≥

√
1− λ2. Putting these constraints together yields the compact manifold

D =
{
y = (Q,λ, s) ∈ SO(3)× [λmin, λmax]× S2 :

f(y) ≥ cos θ, λmin ≤ λ ≤ λmax

}
⊂ I ,

(20)

where θ ∈ (0, π/2) , 0 < λmin < λmax < 1 .

Clearly D ⊂ I. Given this domain, one must construct an NF on D. The construction of ϕ represents work in
progress, however, we conjecture that given the relatively simple geometry of D, that constructing a suitable NF
should be straight forward. In fact, we believe (but have not yet formally shown) that D ' [0, 1]5 × S1 which is
the same topology for which an NF has already been constructed for VS by the first author and colleagues [5].

5 Conclusion

In this paper, we presented a global diffeomorphism from a large subset of configurations in SE(3) — those that
are “visible” — to an appropriately defined image space. Such constructions provide tremendous leverage because
they shed light on the geometry of occlusion free servoing as well as provide a clear pathway to construct global
dynamical visual servoing systems by using, for example, Navigation Functions.
A global, sensor-based representation of the configuration space leaves many open doors. For example, the

control of underactuated and kinematically nonholonomic systems becomes possible in sensor space. The work
presented in this paper represents only the tip of the iceberg. Now that we now know it is possible to globally
represent rigid motion using image coordinates, we would like to construct a more general class of diffeomorphisms
to the image plane that does not require designing special visual targets. We believe that with proper insight, the
projection of a collection of rigidly connected feature points may be interpreted geometrically, again enabling a
global representation of visible configurations. For example, perhaps depth can be described in terms of “moments”,
as suggested by Hamel and Mahoney [6], and orientation can be described in terms of the projection of two or
three feature points.
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Figure 2: A simple model of the FOV cone.

A Proof That c :V → I is a Diffeomorphism

The proof proceeds in four parts. First, we show that c is smooth on V. Next we show that c(V) ⊂ I. Third, we
show that c is bijective by explicitly computing its inverse, c−1, on I. Finally, we show that c−1 is smooth on I.

The function c is smooth.

The function c is composed of smooth functions away from the set where the arguments of ‖ · ‖−1 become zero.
But those arguments are nonzero on V. In particular:
1. Equation (3) depends on ‖d‖−1. However, H ∈ V implies ‖d‖ > %.

2. Equation (6) depends on ‖d− %r3‖−1. Visibility implies ‖d‖ > %, which in turn implies ‖d− %r3‖ ≥
‖d‖ − ‖%r3‖ = ‖d‖ − % > 0.

3. Equation (6) depends on ‖Γq1
r2‖−1. This blows up iff q1 = ±r2, i.e.

q1 =
d− %r3

‖d− %r3‖
= ±r2

and hence, from (5)

ν(H) = (d− %r3) · r3 = ±‖d− %r3‖ r2 · r3 = 0 ,

=⇒ H /∈ V .

This contradiction implies that ‖Γq1
Rab‖ > 0 for H ∈ V.

Hence, c is smooth on V.
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The image of V indeed is contained in I.

To see that c(V) ⊂ I, let (Q,λ, s) = c(H). By construction of c, we have that (Q,λ, s) ∈ SO(3)× (0, 1) × S2. To
show that q1 · s >

√
1− λ2, note from (6) that

q1 · s =
(d− %r3) · s
‖d− %r3‖

=
‖d‖ − %s · r3√

%2 − 2d · r3 + ‖d‖2
=

1− λα√
1− 2λα+ λ2

where α = s · r3. From (5), α > λ to ensure ν(H) > 0. Since the right hand side reaches its minimum of
√
1− λ2

for α = λ, we have that q1 · s >
√
1− λ2.

The function c is bijective.

Consider any H ∈ V, with rotation R =
[
r1 r1 r1

]
and translation d as usual. Let c(H) = (Q,λ, s) ∈ I,

where Q =
[
q1 q2 q3

]
. Given (λ, s), recovering the translation from (4) is trivial, namely d = c−1

1 (λ, s) ∈ B.
Recovering the rotation from (Q,λ, s) requires a bit more care.
Consider the triangle defined by oc, ob and b. The points oc and ob = oc + d are known, but b is unknown. Let

b = b− oc and note that

bc = βq1 , for some β ∈ R .

Moreover, b lies on the surface of the spherical body of radius % centered at ob. Let φ denote the known angle
between b− oc and ob − oc, given in the camera frame by

cosφ = q1 · s >
√
1− λ2 > 0 =⇒ φ ∈ [0, π/2) .

From above know the lengths of two sides of the triangle oc, ob, b, namely ‖d‖ = %/λ and %, one angle, φ. From
the law of cosines, we have

β2 + ‖d‖2 − 2β‖d‖ cosφ = %2 =⇒ β =
%

λ

(
cosφ+ σ

√
λ2 − sin2 φ

)
.

where σ = ±1. In general, there may be zero, one or real solutions for β. However, the requirement that
s · q1 >

√
1− λ2 implies that φ ∈ [0, φmax), where φmax = arccos

√
1− λ2 (where arccos is taken in the first

quadrant). This implies sin2 φ < λ, and thus there are two algebraic solutions for β. Note that r3 = (d − b)/%,
and thus

ν(H) = b · (d− b)/% = (β‖d‖ cosφ− β2)/% = (β/λ)(cosφ− λβ/%)

= (β/λ)

(
cosφ−

(
cosφ+ σ

√
λ2 − sin2 φ

))

= −σβ
λ

√
λ2 − sin2 φ

It is easy to show that β > 0 for either choice of σ, hence, visibility implies σ = −1, allowing us to uniquely
compute

b = ‖b‖q1 , where ‖b‖ = %

λ

(
cosφ−

√
λ2 − sin2 φ

)
. (21)

Thus, r3 = (d− b)/%.
From (6), r2 ∈ span{q1, q2}, namely

r2 = α1q1 + α2q2 (22)
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for some α1 and α2. Note from (6) that α2 > 0. Moreover, r3 · r2 = 0, hence

M, 4×5︷ ︸︸ ︷[
rT3 0 0
I −q1 −q2

]
v, 5×1︷ ︸︸ ︷

r2

α1

α2


 = 0 and ‖r2‖ = 1, α2 > 0 .

The matrix M has a one-dimensional kernel since q1, q2 are linearly independent and hence there are two possible
solutions to Mv = 0 for r2, α2, α2 subject to ‖r2‖ = 1, the ambiguity of which is eliminated since α2 > 0.
Combining the above computations yields the unique inverse to c,

c−1 : (Q,λ, s) 7→ H =

[
r1 r2 r3 d

0 0 0 1

]
, where

d =
%

λ
s, r3 =

1

λ

(
s−

(
cosφ−

√
λ2 − sin2 φ

)
q1

)
,

r2 =

(
q2 −

r3 · q2

r3 · q1
q1

)/∥∥∥∥∥q2 −
r3 · q2

r3 · q1
q1

∥∥∥∥∥, and r1 = r2 × r3 .

(23)

The function c−1 is smooth.

Finally, we need only show that c−1 is smooth. But, c−1 is composed of smooth functions. There are two caveats:

1. Equations involving 1/λ. This is fine since 0 < λ < 1.

2. Equation for r2. First, note that r3 · q1 = r3 · b/‖b‖ = ν(H)/‖b‖ > 0. Also, since q2 and q1 are linearly
independent, the denominator can never be zero, so this equation is smooth on I.

Hence c−1 is smooth, and c is a diffeomorphism c :V ≈ I.

B Computation of the Image Jacobian

We compute the image Jacobian matrix given by (14) algebraically in B.1, and then verify this geometrically in
Section B.2.

B.1 Algebraic Computation of Image Jacobian

B.1.1 Computation of λ̇.

Recall
ḋ = ω × d+ v (24)

where ω = (ṘR−1)∨. Since λ = %/‖d‖, we have

λ̇ = − %

‖d‖3d · ḋ = −
λ2

%
s · v . (25)

B.1.2 Computation of ṡ.

Recall s = d/‖d‖. Equation (24) implies

ṡ = −s× ω +
λ

%
(I − ssT )v. (26)
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B.1.3 Computation of ξ = (Q̇Q−1)∨.

For simplicity, we will first compute Q−1Q̇ and then use the property

Sx = (Sx̂S−1)∨ ∀S ∈ SO(3), x ∈ R3,

to compute
ξ = Q(Q−1Q̇)∨. (27)

Proceeding in this manner, we have

Q−1Q̇ =



qT1
qT2
qT3


 [q̇1 q̇2 q̇3

]
=




0 q1 · q̇2 q1 · q̇3

q2 · q̇1 0 q2 · q̇3

q3 · q̇1 q3 · q̇2 0




which implies

(Q−1Q̇)∨ =



−q2 · q̇3

−q3 · q̇1

q2 · q̇1


 . (28)

It follows that we need to compute the three quantities q2 · q̇1, q3 · q̇1, q2 · q̇3 in terms of ω and v in order to get
an expression of ξ in terms of ω and v. We remark that we chose q2 · q̇1, q3 · q̇1, q2 · q̇3 rather then the other
possible three quantities because the involved computation is relatively simple.
Let us first compute q̇1. Recall

q1 =
(d− %r3)

‖b‖
where b = d− %r3. From (24) and ṙ3 = ω × r3, it follows

q̇1 =
1

‖b‖ (ḋ− %ṙ3) + (d− %r3)
d

dt
(‖b‖−1)

= ω × q1 +
1

‖b‖v +A q1 (29)

where A = ‖b‖ d
dt
(‖b‖−1). From (29), it follows

q2 · q̇1 = q3 · ω +
1

‖b‖q2 · v (30)

q3 · q̇1 = −q2 · ω +
1

‖b‖q3 · v. (31)

We now start to compute q2 · q̇3. Recall

r2 =
q2 − δq1

‖q2 − δq1‖
, δ :=

r3 · q2

r3 · q1
. (32)

This implies

‖q1 × r2‖ =
1

‖q2 − δq1‖
=

1√
1 + δ2

, q1 · r2 = −
δ√
1 + δ2

(33)

which will be used later in computations. From (32), we have q3 = q1 × q2 = (q1 × r2)/‖q1 × r2‖. It follows

q̇3 =
1

‖q1 × r2‖
(q̇1 × r2 + q1 × ṙ2) +B q3 (34)
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where B = ‖q1 × r2‖ ddt (‖q1 × r2‖−1). Hence,

q2 · q̇3 = (1 + δ2)
1
2 (r2 · (q2 × q̇1)− ṙ2 · q3)

= (1 + δ2)
1
2 (r2 · (q2 × q̇1) + r2 · q̇3) (35)

where in the second equality we used the fact that r2 · q3 = 0 from (32) implies r2 · q̇3 = −ṙ2 · q3.
Using (29), we have

r2 · (q2 × q̇1) = −(q1 · r2)(q2 · ω) +
1

‖b‖ (r2 × q2) · v

= −(q1 · r2)(q2 · ω)−
δ

‖b‖
√
1 + δ2

(q3 · v) (36)

where we used r2 × q2 = −δ(1 + δ2)−
1
2 q3, which comes from (32) and (33).

From (34), r2 · q3 = 0 and ṙ2 = ω × r2, we get

r2 · q̇3 =
1

‖q1 × r2‖
q1 · ((ω · r2)r2 − ω)

=
1

‖q1 × r2‖
q1 · (‖q1 × r2‖(q2 · ω − δq1 · ω)r2 − ω)

= (q1 · r2)(q2 · ω)−
(q1 · ω)√
1 + δ2

(37)

where we used (32) in the second equality and (33) in the third equality.
Plugging (36), (37) and (33) into (35), we get

q2 · q̇3 = −q1 · ω −
δ

‖b‖q3 · v (38)

where δ can be expressed in terms of y = (Q,λ, s) as

δ =
s · q2√

λ2 − sin2 φ
, sinφ =

√
1− (s · q1)2. (39)

We are now in a position to compute ξ in (27). From (27) and (28) together with (30), (31), (38), we get

ξ = ω +
1

‖b‖ (δq1q
T
3 − q2q

T
3 + q3q

T
2 )v (40)

where δ is given by (39) or (32), and ‖b‖ can in expressed in terms of y = (Q,λ, s) as follows:

‖b‖ = %

λ(cosφ−
√
λ2 − sin2 φ)

,

{
cosφ = s · q1,

sinφ =
√
1− (s · q1)2

. (41)

B.1.4 Computation of the Jacobian.

The tangent map of the map y = c(H) in the following relation



ξ

λ̇
ṡ


 = THc

[
ω

v

]
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is written as

THc|H=c−1(y) =



I3×3

1
‖b‖ (δq1q

T
3 − q2q

T
3 + q3q

T
2 )

01×3 −λ2

%
sT

−ŝ λ
%
(I3×3 − ssT )




where δ is given by (39), and ‖b‖ is given by (41).

B.2 Geometric Computation of Image Jacobian

Let pb denote an arbitrary point fixed in the body frame, expressed in the camera frame as p = Hpb. Let p = p−oc
denote the vector from the camera origin to the point p. Note that

ṗ =

[
ṗ

0

]
= Ḣpb = SHpb = SHp

hence, we may write

ṗ =
[
−p̂ I

] [ω
v

]
and

d

dt
‖p‖ = 1

‖p‖p · ṗ =
1

‖p‖p · v .

Thus, it follows that

p

‖p‖ =
1

‖p‖ ṗ− p
1

‖p‖2
d

dt
‖p‖ = 1

‖p‖
[
−p̂

(
I − ‖p‖−2ppT

)] [ω
v

]
.

B.2.1 Computation of λ̇ and ṡ.

It follows from above that

λ̇ =
[
0T −λ2

%
sT
] [

ω

v

]
and ṡ =

[
−ŝ λ

%
(I − ssT )

] [
ω

v

]
. (42)

B.2.2 Computation of q̇1.

Recalling that q1 = b/‖b‖ we have

q̇1 =
[
−q̂1 ‖b‖−1 (I − q1q

T
1 )
] [ω

v

]
(43)

where ‖b‖ is given by (21).

B.2.3 Computation of q̇3.

Consider the line defined by

` = {b+ αr2,∀α ∈ R},
which, together with the camera origin, determines the plane Π. Let l0 ∈ ` denote the point on the line closest to
the camera origin, and l = l − oc the corresponding vector from the camera origin, i.e l · r2 = 0. Hence

q3 =
l

‖l‖ × r2, where l =
(
I − r2r

T
2

)
b .
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To compute q̇3, we simply compute
d
dt
(l/‖l||) and ṙ2, and use the product rule. Although it is tempting to simply

write
d

dt

l

‖l||
=
1

‖l‖
[
−l̂

(
I − ‖l‖−2l lT

)] [ω
v

]
(wrong!),

it is important to note that l is not fixed with respect to the body — it also depends on the camera location. In
fact, for pure translations parallel to r2, l̇ = 0. More generally,

d

dt

l

‖l||
=
1

‖l‖
[
−l̂ q3q3

T
] [ω

v

]
.

Noting that ṙ2 = −r̂2ω yields

q̇3 = −r2 ×
(
d

dt

l

‖l‖

)
+
1

‖l‖ l× ṙ2 =
1

‖l‖
[
−l̂× r2 −r̂2q3q3

T

] [
ω

v

]
.

Hence

q̇3 =
[
−q̂3 −‖l‖−2lq3

T
] [ω

v

]
. (44)

B.2.4 Computation of q̇2.

Note that q2 = q3 × q1, we have

q̇2 = q3 × q̇1 − q1 × q̇3

= q̂3

(
−q̂1ω + ‖b‖−1

(I − q1q
T
1 )v

)
− q̂1

(
−q̂3ω − ‖l‖−2

lq3 · v
)

= −q̂2ω + ‖b‖−1 (
q̂3 − q2q

T
1

)
v + ‖l‖−2

q̂1l q3 · v .

B.2.5 Computation of ξ.

As in B.1, we compute
ξ = Q(Q−1Q̇)∨ .

For convenience, we compute q1 · q̇2, q1 · q̇3 and q2 · q̇3. Note that

‖l‖2 = ‖b‖2(1− (r2 · q1)
2), q1 · l = ‖b‖(1− (r2 · q1)

2),

and q2 · l = −‖l‖r2 · q1 ,

and hence
q1 · q̇2 = −q1 · (q2 × ω) + ‖b‖−1q1 · (q3 × v) = −q3 · ω − ‖b‖−1q2 · v,
q1 · q̇3 = −q1 · (q3 × ω)− ‖l‖−2(q1 · l)(q3 · v) = q2 · ω − ‖b‖−1q3 · v

and, using r2 and r3 found in (23),

q2 · q̇3 = −q2 · (q3 × ω)− ‖l‖2(q2 · l)(q3 · v)

= −q1 · ω − ‖b‖−1 r3 · q2

r3 · q1
q3 · v

= −q1 · ω − ‖b‖−1 q2 · s√
λ2 − sin2 φ

q3 · v

Hence

ξ = ω + ‖b‖−1

(
q2 · s√

λ2 − sin2 φ
q1q

T
3 − q2q

T
3 + q3q

T
2

)
v

as before in Section B.1.
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C Application to Dynamical Rigid Body Servoing

For second order systems, ϕ serves as an artificial potential function which generates the force T ∗
y c (dϕ)

T . Adding
a suitable damping force, B : TV → T ∗V, yields the controller

F =

[
F 1

F 2

]
= T ∗

y c (dϕ)
T −B(Ω,V ) , where y = c(H) = c(G−1) (45)

and F ∈ T ∗
GV ' R3 s R3 represents the torque and force applied to the camera. Assuming the rigid body is not

subject to any additional external forces (or such an external potential or gravity) or assuming such forces can be
cancelled by our controller, we model with the standard rigid body dynamical equations

Ġ = G

[
Ω̂ V

0T 0

]
,

Π̇ = Π×Ω+ F 1 ,

Ṗ = P ×Ω+ F 2 ,

(46)

where Π,P are the linear and angular momenta, respectively, given by

Π = IΩ P = mV

where m is the mass of the camera rigid body system, and I = IT > 0 is the angular inertia matrix.
Note that for our controller, we do not need to know the inertia of the camera, and yet we are still guaranteed

asymptotic convergence. In fact, one can show that convergence H
t→∞−−−→ H∗ is guaranteed from all initially

conditions on T ∗D whose energy is less than 1. For more information, see [8].

C.0.6 If the camera frame is not at the center of mass.

Attach a frame Fc at the pinhole of the camera, Fcm at the center of mass of the camera + robot system, and Fb
to the center of the object being observed. Here we assume that Fb is the inertial frame. Let G ∈ SE(3) be the
transformation from Fc to Fb and G0 ∈ SE(3) be the transformation from Fcm to Fc. Assume that G0 does not
change in time. The composition Gcm := GG0 is the transformation from Fcm to Fb. The body-fixed velocity of
the frame Fcm is given by

G−1
cmĠcm = (GG0)

−1 d

dt
(GG0) = G−1

0 (G
−1Ġ)G0. (47)

Let

G−1
cmĠcm =

[
Ω̂cm V cm

0 0

]
, G−1Ġ =

[
Ω̂ V

0 0

]
, G−1

0 =

[
B0 b0
0 1

]
. (48)

Notice that G−1
0 is the transformation from frame Fc to frame Fcm. By (47) and (48), it follows

(Ωcm,V cm) = (B0Ω, −B0Ω× b0 +B0V c),

or [
Ωcm

V cm

]
=

[
B0 0

b̂0B0 B0

] [
Ω

V c

]
.

Readers with knowledge of Lie groups will readily see that what we computed is the adjoint:

(Ωcm,V cm) = AdG−1
0
(Ω,V c).
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We now study how torques and forces are transformed. Let (τ c,f c) be the force measured in the frame Fc and
(τ cm,f cm). One can easily see the following relationship:

[
τ cm

f cm

]
=

([
B0 0

b̂0B0 B0

]−1
)T [

τ c
f c

]
=

[
B0 b̂0B0

0 B0

] [
τ c
f c

]
,

which can be compactly written as

(τ cm,f cm) = Ad
∗
G0
(τ c,f c).

The equations of motion in frame Fcm is given by

Πcm = Πcm ×Ωcm + τ cm

Ṗ cm = P cm ×Ωcm + f cm

with Πcm = IΩcm and P cm = mV cm where I is the inertia matrix of the camera + robot system with respect to
frame Fcm and m is the mass of the camera + robot system. Here, we assumed that the gravity effect has been
cancelled out by control.
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